HOMOLOGICAL ALGEBRA NOTES

KELLER VANDEBOGERT

1. CHAIN HOMOTOPIES

Consider a chain complex C' of vector spaces
oo — O —C, — Cpey —— -+
At every point we may extract the short exact sequences

0 Zn C, Cp/Zy — 0

0—d(Cpy1) — Zp, —— Z,,/d(Cryr) — 0
Since Z,, and d(C,,) are vector subspaces, in particular they are injective
modules, giving that

Cn=2,® B,
Z,=B,o H

with B), := C,/Z,, H, := H,(C), and B,, :== d(Cp41). This decom-
position allows for a way to move backward along our complex via a

composition of projections and inclusions:
C,=2,®B, = Z,=B,®H, - B, =B, .| = Z,419 B, ;1 = Cyhp1

If we denote by s, : C, — C,; the composition of the above, then

one sees d,s,d, = d, (more succinctly, dsd = d), and we have the
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commutative diagram

dn+1 d
? On—i—l ? Cn n} On—l ?

|2l

n+1
? CnJrl ? On n) Cnfl ?

Definition 1.1. A complex C is called split is there are maps s, :
C, — C,41 such that dsd = d. The s, are called the splitting maps. If

in addition C'is acyclic, C' is called split exact.

The map d, 15, + sn_1d, is particularly interesting. We have the

following;:

Proposition 1.2. If id = d, 15, + Sn_1d,, then the chain complex C

15 acyclic.

Proof. Let z be an n-cycle. Then, id(z) = d,,115,(2) € B,(C), so that
the induced map

id, : H,(C) — H,(C)
is equivalent to the 0 map. Since id, must be an isomorphism, we

conclude that H,(C') = 0. O

This motivates the following:

Definition 1.3. Let f, g : C' — C’ be two morphisms of complexes. f
and g are called chain homotopic if f,, — g, = d}, |5, + Sp—1dpn. If g =0

in the above, then f is called null-homotopic.

Why do we care about such maps? If we follow the proof of the
previous proposition with f, — g, substituted for the identity, we see

that the induced homology maps coincide. That is,
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In particular, f is null-homotopic when the induced homology maps are
trivial. Additionally, we see that f must commute with our differentials

in this case.

Proposition 1.4. Let F : C — C' be an additive functor. If f, g :
C — C' are chain homotopic, then so are F(f) and F(g)

Proof. Note that additivity of our functors guarantees that F'(d) re-

mains a differential. Since functors preserve commutativity, we see

F(f) = F(g) = F(d)F(s) + F(s)F(d)

2. MAPPING CONES

Let f: B — C be a morphism of chain complexes. We define a new
complex, the mapping cone of f denoted cone(f) by complex whose

degree n part is

Bn—l N> Cn

—dg 0
d =
(7 )
It remains to show that this is actually a chain complex. We see:
—dg O —dg 0
dod=
° (—f dc> (—f dc)

_( —dz 0

~ \fdp —dof di

(0 0

- \0 0
Where, by definition of a morphism of complexes, we have that fdg =

def.

with differential
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Exercise 2.1. Let cone(C') denote the mapping cone of the identity
map on C. Show that cone(C') is split exact.

Proof. Define our splitting map s, : C,_1 & C,, — C, & C,_1 by

Sn(b,c) = (—¢,0). Then, at every point of our complex, s is repre-

0 —1
0 0
We first show that d = dsd:
—de 0 0 —1 —de 0\ [(—=dc O id —dco
—id de 0 0 —id do) \—-id d¢o 0 0
~ [—dcoid dzc
“\ —id*  idode

_(—dc 0 _
(—id dc)d

So this sequence is split. It remains to show exactness. Suppose that

(b, c) € Ker(d), so that

sented by the matrix

d(b,c) = (=dc(b),de(c) — b) = (0,0)
So that b € Ker(de) N Im(de) = Tm(de). Then,
(b,c) = (dc(c), c)
= (—dc(—c),dc(0) — (—c))
— d(—¢,0) € Tm(d)
So that Ker(d) = Tm(d), yielding exactness.
O

Exercise 2.2. Let f: C'— D be a map of complexes. Show that f is

null-homotopic if and only if f extends to a map f : cone(f) — D.

Proof. Assume first that f is null-homotopic. We have mappings s, :
C,, — D1, and by definition of extension we should have that f(0, c) =
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f(c). For each n, define

fn(C’, C) = fn(c) - Snfl(c/)

For convenience, we may represent f, = (—s,_1 f,) as a row vector.

Then, we only need show that fd —df = 0:

(_Sn—l fn) (__Clig d00> = (Sn—ldc = JIn fndC)
= (—dpsp—1 dpfn)
=dp (—Sn—l fn)
Where the final steps used the assumption that f is null-homotopic
and a chain map. Conversely, if such an extension f exists, we may
construct splitting maps s, : C,_1 — D, by defining s, 1(c) :=
—f(c,0). It remains to show that f is null-homotopic with our s,
defined in this manner.
fle)=f(0,¢)
= f(de(c),¢) + f(=dc(c),0)

0)
:_7<(—1d de ))+Sn0dc c)
)

:—fod( )+Sn0dc(

= dpsp(c) + spde(c)
Where the final equality follows from the assumption that f is a chain
map. The above of course shows that f is null-homotopic, completing
the proof.
O

Proposition 2.3. We have a short exact sequence of chain complexes
0 —— C —— cone(f) LN B[-1]——0

Where the left map takes ¢ — (0,c¢), and 6(b,c) = —b
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Proof. The inclusion ¢(c) = (0,c¢) is clearly injective, so we have ex-
actness at C. We also see that 6(0,¢) = 0, so Im¢ C Kerd. The
reverse inclusion follows immediately by noting §(b,¢) =0 <= b= 0.

Finally, 0 is certainly surjective, so our sequence is exact. 0

Whenever we have a short exact sequence, one should imagine the
induced long exact sequence of homology groups. In this case, the
mapping cone induces a particularly nice property of the connecting

morphism constructed in the Snake Lemma.

Lemma 2.4. Let

Hy 1 (cone(f)) “— H,(B) 2~ H,(C) —— H,(cone(f))

be the induced long exact sequence of homology groups. Then, in the

above, 0 = f,

Proof. Choose b € B, to be some cycle. Then, §(—b,0) = b, and
applying our cone differential to (—b,0) gives (dg(b), f(b)) = (0, f(b)).
By definition of the map 0, this implies that

O[] = [fb] = f.[0]

g

Corollary 2.5. f : B — C s a quasi-isomorphism if and only if

Cone(f) is ezact.

Example 2.6. Let X be a chain complex of R-modules (assume R is
commutative/Noetherian). For any r € R, the homothety map " :
X — X (which I'll denote by just r when context is clear) is a chain

map, where uf(m) = rm. We inductively define the Koszul complex
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K (z) of a sequence z = x1,...,x, by setting K(z1) to be the complex

0 R R 0

For n > 2, set 2’ = 21,...,2,_1. Then, K(z) = cone(x,), where we
are viewing x,, as the homothety z,, : K(2') — K(z'). We then have

the exact sequence

0— K(2) K(z) K(2)[-1]——0

The previous lemma then immediately tells us that the induced map
Tns © Hy(K(2')) = Hp(K(2')) is our connecting morphism. This defi-
nition of the Koszul complex has the advantage that certain properties
are easily obtained. For instance, if the first element of x is a unit,

K(x) is exact.

3. MAPPING CYLINDER

Definition 3.1. The mapping cylinder cyl(f) of a chain map f : B —
C'is the complex whose degree n part is B, ® B,,_1 ®C,, with differential

given by
dg idp 0
d=10 —dg O
0 —f de

One checks that

dg idg 0 dg idg 0
=10 —dg 0 0 —dg 0
0 —f dc 0 _f dC
d% dp—dp 0
=10 d% 0]1=0
0 fdg—dcf dg
And we have the following exercise, similar to the previous exercise

for the cone case.
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Exercise 3.2. Let cyl(C') denote the mapping cylinder of the identity.
Show that two maps f, g are chain homotopic if and only if they extend
to a map f,s,g): cyl(C) — D.

Proof. Assume first that f and g are chain homotopic. There exist
Sp + Cp = Dpiq, and we may define an extension h of f and g by

h(a,b,c) = f(a) + s(b) + g(c). As a row vector, we may say

h=(f s 9)

It remains to show that this extension is a chain map, that is, our

differentials commute with it. We have:

de id 0
hdepcy=(f s g)| 0 —de 0
0 —id d¢

= (fde f—sdc—g g gdc)
= (dpf dps dpg)

=dp (f s g

Where the second to last step in the above used that f and ¢ are both
chain maps, and by assumption f — g = sd + ds. Hence this extension
is indeed a chain map.

Conversely, suppose such an extension h exists. Then we may define
splitting maps s : C;, = D,,11 by s(¢) = h(0,¢,0). It remains to show

that this implies f and g are chain homotopic. Since h is an extension,
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we see for any ¢ € C),:
f(C) - g(c) = h(c7 0, _C)
= h(C, —dc(C), —C) + h(O, dc(C), 0)

de id 0 0
:h< 0 —do O c )—I—Sodc(c)
0 —id d¢ 0
= h(dcyl(c)(o, c, O)) + Sdc(C)

= dph(0,¢,0) + sdo(c)

= dps(c) + sde(c)
Where the third to fourth equality uses the assumption that A is a
chain map. We then see that f and g are chain homotopic, as asserted.

U
Lemma 3.3. The inclusion a : C — cyl(f) is a quasi-isomorphism.

Proof. This follows from observing that
0 —— C —% cyl(f) — cone(—idg) —— 0

is exact, where the left map is our inclusion and the right map is a

transposition and projection, that is, (b,0',c) — (0/,b) with induced

(g 0
d_(id —dB)

We also have the exact sequence

differential

0 —— B —— cone(—idg) — B[-1] — 0

Which induces the exact sequence

id«

H,(B) —— H,(B) — H,(cone(—idg)) — H,, 1(B) — - --

Since id, is an isomorphism, exactness yields that H,(cone(—idg)) =0

for every n. Looking at the induced long exact sequence of our first
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short exact sequence, we have
H, 41 (cone(—idp)) —— H,(C) —= H,(cyl(f)) — H,(cone(—idp))

Since our mapping cone homology groups vanish, we conclude that a

is an isormorphism, that is, « is a quasi-isomorphism. O

Exercise 3.4. Suppose f : B — (C'is a chain map. Define g : cyl(f) —

C by B(b,0',c) = f(b) + c. Show that § is a chain map and fa = id.
Additionally, show that s defined by s(b, ¥’, ¢) defines a chain homo-

topy from the identity to a3, and conclude that « is a chain homotopy

equivalence between C' and cyl(f).

Proof. Firstly, given ¢ € C,,

Blale)) = 6(0,0,¢) =

So that Sa = id. It remains to show that 3 is a chain map, that is, it

commutes with our differentials. We see:

dg id 0 b) + b

5( 0 —ds 0 —dB )

0 _f dC C b, +dc
—f dB<b + f(0) - (b)+dc(0)

= de(f()) + de(c)
= deBB,Y, ¢

So that [ is indeed a chain map. Let s be defined as in the problem
statement. We wish to show that idey sy — a8 = ds + sd. To this end,
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compute:

(b, ¢) — ap(b,V,c) = (b, c) — a(f(b) +c)
= (0,0, = (b))
= (b, =dp(b), = f (b)) + (0,dp(b) + V', 0)
= deyi()(0,0,0) + s(dp(b) + ¥, —dp(b), = f(b) + do(c))

= dCyl(f)S(ba bl: C) + Sdcyl(f)(b, b/, C)

So that 1 — aff = ds + sd, as desired. By definition, « is a chain

homotopy equivalence.

Given a short exact sequence

of complexes, we can form the following commutative diagram with

exact rows
0 C cone(f) —2— B[—1] —— 0
0—— B——cyl(f) —— cone(f) —— 0
L,k
0—B—wCc—2 D 0

Where ¢(b, ¢) := g(c) and «, § are the maps considered in the previous
exercise. It is also clear by the definition of our mapping cylinder that

cyl(f)/B = cone(f). We then have the following:
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Lemma 3.5. In the following induced commutative diagram (with ex-

act rows):

Hy(B) —— Hy(cyl(f)) — Hu(cone(f))

l | l

H,(B) —— H,(C) —% s H,(D)

All vertical arrows are isomorphisms.

The proof of this is largely a collection of the previous results in

these notes, and is left as an exercise to the reader.



