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HOMOLOGICAL ALGEBRA NOTES

KELLER VANDEBOGERT

1. Chain Homotopies

Consider a chain complex C of vector spaces

· · · // Cn+1
// Cn // Cn−1 // · · ·

At every point we may extract the short exact sequences

0 // Zn // Cn // Cn/Zn // 0

0 // d(Cn+1) // Zn // Zn/d(Cn+1) // 0

Since Zn and d(Cn) are vector subspaces, in particular they are injective

modules, giving that

Cn = Zn ⊕B′n

Zn = Bn ⊕H ′n

with B′n := Cn/Zn, H ′n := Hn(C), and Bn := d(Cn+1). This decom-

position allows for a way to move backward along our complex via a

composition of projections and inclusions:

Cn ∼= Zn⊕B′n → Zn ∼= Bn⊕H ′n → Bn
∼= B′n+1 ↪→ Zn+1⊕B′n+1

∼= Cn+1

If we denote by sn : Cn → Cn+l the composition of the above, then

one sees dnsndn = dn (more succinctly, dsd = d), and we have the
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commutative diagram

// Cn+1

��

dn+1
// Cn

sn
||

dn
//

��

Cn−1 //

sn−1
|| ��

// Cn+1

dn+1
// Cn

dn
// Cn−1 //

Definition 1.1. A complex C is called split is there are maps sn :

Cn → Cn+1 such that dsd = d. The sn are called the splitting maps. If

in addition C is acyclic, C is called split exact.

The map dn+1sn + sn−1dn is particularly interesting. We have the

following:

Proposition 1.2. If id = dn+1sn + sn−1dn, then the chain complex C

is acyclic.

Proof. Let z be an n-cycle. Then, id(z) = dn+1sn(z) ∈ Bn(C), so that

the induced map

id∗ : Hp(C)→ Hp(C)

is equivalent to the 0 map. Since id∗ must be an isomorphism, we

conclude that Hp(C) = 0. �

This motivates the following:

Definition 1.3. Let f , g : C → C ′ be two morphisms of complexes. f

and g are called chain homotopic if fn−gn = d′n+1sn+sn−1dn. If g ≡ 0

in the above, then f is called null-homotopic.

Why do we care about such maps? If we follow the proof of the

previous proposition with fn − gn substituted for the identity, we see

that the induced homology maps coincide. That is,

fn∗ = gn∗ : Hn(C)→ Hn(C ′)
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In particular, f is null-homotopic when the induced homology maps are

trivial. Additionally, we see that f must commute with our differentials

in this case.

Proposition 1.4. Let F : C → C ′ be an additive functor. If f , g :

C → C ′ are chain homotopic, then so are F (f) and F (g)

Proof. Note that additivity of our functors guarantees that F (d) re-

mains a differential. Since functors preserve commutativity, we see

F (f)− F (g) = F (d)F (s) + F (s)F (d)

�

2. Mapping Cones

Let f : B → C be a morphism of chain complexes. We define a new

complex, the mapping cone of f denoted cone(f) by complex whose

degree n part is

Bn−1 ⊕ Cn

with differential

d =

(
−dB 0
−f dC

)
It remains to show that this is actually a chain complex. We see:

d ◦ d =

(
−dB 0
−f dC

)(
−dB 0
−f dC

)
=

(
−d2B 0

fdB − dCf d2C

)
=

(
0 0
0 0

)
Where, by definition of a morphism of complexes, we have that fdB =

dCf .



4 KELLER VANDEBOGERT

Exercise 2.1. Let cone(C) denote the mapping cone of the identity

map on C. Show that cone(C) is split exact.

Proof. Define our splitting map sn : Cn−1 ⊕ Cn → Cn ⊕ Cn−1 by

sn(b, c) = (−c, 0). Then, at every point of our complex, s is repre-

sented by the matrix (
0 −1
0 0

)
We first show that d = dsd:(

−dC 0
−id dC

)(
0 −1
0 0

)(
−dC 0
−id dC

)
=

(
−dC 0
−id dC

)(
id −dC
0 0

)
=

(
−dC ◦ id d2C
−id2 id ◦ dC

)
=

(
−dC 0
−id dC

)
= d

So this sequence is split. It remains to show exactness. Suppose that

(b, c) ∈ Ker(d), so that

d(b, c) = (−dC(b), dC(c)− b) = (0, 0)

So that b ∈ Ker(dC) ∩ Im(dC) = Im(dC). Then,

(b, c) = (dC(c), c)

= (−dC(−c), dC(0)− (−c))

= d(−c, 0) ∈ Im(d)

So that Ker(d) = Im(d), yielding exactness.

�

Exercise 2.2. Let f : C → D be a map of complexes. Show that f is

null-homotopic if and only if f extends to a map f : cone(f)→ D.

Proof. Assume first that f is null-homotopic. We have mappings sn :

Cn → Dn+1, and by definition of extension we should have that f(0, c) =
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f(c). For each n, define

fn(c′, c) := fn(c)− sn−1(c′)

For convenience, we may represent fn = (−sn−1 fn) as a row vector.

Then, we only need show that fd− df = 0:(
−sn−1 fn

)(−dC 0
−id dC

)
=
(
sn−1dC − fn fndC

)
=
(
−dDsn−1 dDfn

)
= dD

(
−sn−1 fn

)
Where the final steps used the assumption that f is null-homotopic

and a chain map. Conversely, if such an extension f exists, we may

construct splitting maps sn−1 : Cn−1 → Dn by defining sn−1(c) :=

−f(c, 0). It remains to show that f is null-homotopic with our sn

defined in this manner.

f(c) = f(0, c)

= f(dC(c), c) + f(−dC(c), 0)

= −f

((
−dC 0
−id dC

)(
c
0

))
+ sn ◦ dC(c)

= −f ◦ d(c) + sn ◦ dC(c)

= dDsn(c) + sndC(c)

Where the final equality follows from the assumption that f is a chain

map. The above of course shows that f is null-homotopic, completing

the proof.

�

Proposition 2.3. We have a short exact sequence of chain complexes

0 // C // cone(f)
δ
// B[−1] // 0

Where the left map takes c 7→ (0, c), and δ(b, c) = −b
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Proof. The inclusion ι(c) = (0, c) is clearly injective, so we have ex-

actness at C. We also see that δ(0, c) = 0, so Im ι ⊂ Ker δ. The

reverse inclusion follows immediately by noting δ(b, c) = 0 ⇐⇒ b = 0.

Finally, δ is certainly surjective, so our sequence is exact. �

Whenever we have a short exact sequence, one should imagine the

induced long exact sequence of homology groups. In this case, the

mapping cone induces a particularly nice property of the connecting

morphism constructed in the Snake Lemma.

Lemma 2.4. Let

Hn+1(cone(f))
δ∗

// Hn(B)
∂
// Hn(C) // Hn(cone(f))

be the induced long exact sequence of homology groups. Then, in the

above, ∂ ≡ f∗

Proof. Choose b ∈ Bn to be some cycle. Then, δ(−b, 0) = b, and

applying our cone differential to (−b, 0) gives (dB(b), f(b)) = (0, f(b)).

By definition of the map ∂, this implies that

∂[b] = [fb] = f∗[b]

�

Corollary 2.5. f : B → C is a quasi-isomorphism if and only if

Cone(f) is exact.

Example 2.6. Let X be a chain complex of R-modules (assume R is

commutative/Noetherian). For any r ∈ R, the homothety map µr :

X → X (which I’ll denote by just r when context is clear) is a chain

map, where µri (m) = rm. We inductively define the Koszul complex
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K(x) of a sequence x = x1, . . . , xn by setting K(x1) to be the complex

0 // R
x1
// R // 0

For n > 2, set x′ = x1, . . . , xn−1. Then, K(x) = cone(xn), where we

are viewing xn as the homothety xn : K(x′) → K(x′). We then have

the exact sequence

0 // K(x′) // K(x) // K(x′)[−1] // 0

The previous lemma then immediately tells us that the induced map

xn∗ : Hp(K(x′)) → Hn(K(x′)) is our connecting morphism. This defi-

nition of the Koszul complex has the advantage that certain properties

are easily obtained. For instance, if the first element of x is a unit,

K(x) is exact.

3. Mapping Cylinder

Definition 3.1. The mapping cylinder cyl(f) of a chain map f : B →

C is the complex whose degree n part is Bn⊕Bn−1⊕Cn with differential

given by

d =

dB idB 0
0 −dB 0
0 −f dC


One checks that

d2 =

dB idB 0
0 −dB 0
0 −f dC

dB idB 0
0 −dB 0
0 −f dC


=

d2B dB − dB 0
0 d2B 0
0 fdB − dCf d2C

 = 0

And we have the following exercise, similar to the previous exercise

for the cone case.
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Exercise 3.2. Let cyl(C) denote the mapping cylinder of the identity.

Show that two maps f , g are chain homotopic if and only if they extend

to a map f, s, g) : cyl(C)→ D.

Proof. Assume first that f and g are chain homotopic. There exist

sn : Cn → Dn+1, and we may define an extension h of f and g by

h(a, b, c) = f(a) + s(b) + g(c). As a row vector, we may say

h =
(
f s g

)

It remains to show that this extension is a chain map, that is, our

differentials commute with it. We have:

hdcyl(C) =
(
f s g

)dC id 0
0 −dC 0
0 −id dC


=
(
fdC f − sdC − g g gdC

)
=
(
dDf dDs dDg

)
= dD

(
f s g

)
Where the second to last step in the above used that f and g are both

chain maps, and by assumption f − g = sd+ ds. Hence this extension

is indeed a chain map.

Conversely, suppose such an extension h exists. Then we may define

splitting maps s : Cn → Dn+1 by s(c) = h(0, c, 0). It remains to show

that this implies f and g are chain homotopic. Since h is an extension,
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we see for any c ∈ Cn:

f(c)− g(c) = h(c, 0,−c)

= h(c,−dC(c),−c) + h(0, dC(c), 0)

= h

(dC id 0
0 −dC 0
0 −id dC

0
c
0

)+ s ◦ dC(c)

= h(dcyl(C)(0, c, 0)) + sdC(c)

= dDh(0, c, 0) + sdC(c)

= dDs(c) + sdC(c)

Where the third to fourth equality uses the assumption that h is a

chain map. We then see that f and g are chain homotopic, as asserted.

�

Lemma 3.3. The inclusion α : C → cyl(f) is a quasi-isomorphism.

Proof. This follows from observing that

0 // C
α
// cyl(f) // cone(−idB) // 0

is exact, where the left map is our inclusion and the right map is a

transposition and projection, that is, (b, b′, c) 7→ (b′, b) with induced

differential

d =

(
dB 0
id −dB

)
We also have the exact sequence

0 // B // cone(−idB) // B[−1] // 0

Which induces the exact sequence

Hn(B)
id∗
// Hn(B) // Hn(cone(−idB)) // Hn−1(B) // · · ·

Since id∗ is an isomorphism, exactness yields that Hn(cone(−idB)) = 0

for every n. Looking at the induced long exact sequence of our first
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short exact sequence, we have

Hn+1(cone(−idB)) // Hn(C)
α∗
// Hn(cyl(f)) // Hn(cone(−idB))

Since our mapping cone homology groups vanish, we conclude that α∗

is an isormorphism, that is, α is a quasi-isomorphism. �

Exercise 3.4. Suppose f : B → C is a chain map. Define β : cyl(f)→

C by β(b, b′, c) = f(b) + c. Show that β is a chain map and βα = id.

Additionally, show that s defined by s(b, b′, c) defines a chain homo-

topy from the identity to αβ, and conclude that α is a chain homotopy

equivalence between C and cyl(f).

Proof. Firstly, given c ∈ Cn,

β(α(c)) = β(0, 0, c) = c

So that βα = id. It remains to show that β is a chain map, that is, it

commutes with our differentials. We see:

β

(dB id 0
0 −dB 0
0 −f dC

bb′
c

) = β

( dB(b) + b′

−dB(b′)
−f(b′) + dC(c)


= f(dB(b)) + f(b′)− f(b′) + dC(c)

= dC(f(b)) + dC(c)

= dCβ(b, b′, c)

So that β is indeed a chain map. Let s be defined as in the problem

statement. We wish to show that idcyl(f) − αβ = ds+ sd. To this end,
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compute:

(b, b′, c)− αβ(b, b′, c) = (b, b′, c)− α(f(b) + c)

= (b, b′,−f(b))

= (b,−dB(b),−f(b)) + (0, dB(b) + b′, 0)

= dcyl(f)(0, b, 0) + s(dB(b) + b′,−dB(b),−f(b) + dC(c))

= dcyl(f)s(b, b
′, c) + sdcyl(f)(b, b

′, c)

So that 1 − αβ = ds + sd, as desired. By definition, α is a chain

homotopy equivalence.

�

Given a short exact sequence

0 // B
f
// C

g
// D // 0

of complexes, we can form the following commutative diagram with

exact rows

0 // C

α

��

// cone(f)

��

δ
// B[−1] // 0

0 // B

��

// cyl(f)

β
��

// cone(f)

φ
��

// 0

0 // B
f
// C

g
// D // 0

Where φ(b, c) := g(c) and α, β are the maps considered in the previous

exercise. It is also clear by the definition of our mapping cylinder that

cyl(f)/B = cone(f). We then have the following:
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Lemma 3.5. In the following induced commutative diagram (with ex-

act rows):

Hn(B)

��

// Hn(cyl(f))

��

// Hn(cone(f))

��

Hn(B)
f∗

// Hn(C)
g∗

// Hn(D)

All vertical arrows are isomorphisms.

The proof of this is largely a collection of the previous results in

these notes, and is left as an exercise to the reader.


